References

[A] M.T.Anderson Scalar curvature and geometrization conjecture for three-manifolds. Comparison Geometry (Berkeley, 1993-94), MSRI Publ. 30 (1997), 49-82.

[B-Em] D.Bakry, M.Emery Diffusions hypercontractives. Seminaire de Probabilites XIX, 1983-84, Lecture Notes in Math. 1123 (1985), 177-206.

[Cao-C] H.-D. Cao, B.Chow Recent developments on the Ricci flow. Bull. AMS 36 (1999), 59-74.

[Ch-Co] J.Cheeger, T.H.Colding On the structure of spaces with Ricci curvature bounded below I. Jour. Diff. Geom. 46 (1997), 406-480.

[C] B.Chow Entropy estimate for Ricci flow on compact two-orbifolds. Jour. Diff. Geom. 33 (1991), 597-600.

[C-Chu 1] B.Chow, S.-C. Chu A geometric interpretation of Hamilton's Harnack inequality for the Ricci flow. Math. Res. Let. 2 (1995), 701-718.

[C-Chu 2] B.Chow, S.-C. Chu A geometric approach to the linear trace Harnack inequality for the Ricci flow. Math. Res. Let. 3 (1996), 549-568.

[D] E.D'Hoker String theory. Quantum fields and strings: a course for mathematicians (Princeton, 1996-97), 807-1011.

[E 1] K.Ecker Logarithmic Sobolev inequalities on submanifolds of euclidean space. Jour. Reine Angew. Mat. 522 (2000), 105-118.

[E 2] K.Ecker A local monotonicity formula for mean curvature flow. Ann. Math. 154 (2001), 503-525.

[E-Hu] K.Ecker, G.Huisken In terior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105 (1991), 547-569.

[Gaw] K.Gawedzki Lectures on conformal field theory. Quantum fields and strings: a course for mathematicians (Princeton, 1996-97), 727-805.

[G] L.Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups. Dirichlet forms (Varenna, 1992) Lecture Notes in Math. 1563 (1993), 54-88.

[H 1] R.S.Hamilton Three manifolds with positive Ricci curvature. Jour. Diff. Geom. 17 (1982), 255-306.

[H 2] R.S.Hamilton Four manifolds with positive curvature operator. Jour. Diff. Geom. 24 (1986), 153-179.

[H 3] R.S.Hamilton The Harnack estimate for the Ricci flow. Jour. Diff. Geom. 37 (1993), 225-243.

[H 4] R.S.Hamilton Formation of singularities in the Ricci flow. Surveys in Diff. Geom. 2 (1995), 7-136.

[H 5] R.S.Hamilton Four-manifolds with positive isotropic curvature. Commun. Anal. Geom. 5 (1997), 1-92.

[H 6] R.S.Hamilton Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7 (1999), 695-729.

[H 7] R.S.Hamilton A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1 (1993), 113-126.

[H 8] R.S.Hamilton Monotonicity formulas for parabolic flows on manifolds. Commun. Anal. Geom. 1 (1993), 127-137.

[H 9] R.S.Hamilton A compactness property for solutions of the Ricci flow. Amer. Jour. Math. 117 (1995), 545-572.

[H 10] R.S.Hamilton The Ricci flow on surfaces. Contemp. Math. 71 (1988), 237-261.

[Hu] G.Huisken Asymptotic behavior for singularities of the mean curvature flow. Jour. Diff. Geom. 31 (1990), 285-299.

[I] T.Ivey Ricci solitons on compact three-manifolds. Diff. Geo. Appl. 3 (1993), 301-307.

[L-Y] P.Li, S.-T. Yau On the parabolic kernel of the Schrodinger operator. Acta Math. 156 (1986), 153-201.

[Lott] J.Lott Some geometric properties of the Bakry-Emery-Ricci tensor. arXiv:math.DG/0211065.